Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biomimetics (Basel) ; 9(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38248613

RESUMO

With the wide application of mobile robots, mobile robot path planning (MRPP) has attracted the attention of scholars, and many metaheuristic algorithms have been used to solve MRPP. Swarm-based algorithms are suitable for solving MRPP due to their population-based computational approach. Hence, this paper utilizes the Whale Optimization Algorithm (WOA) to address the problem, aiming to improve the solution accuracy. Whale optimization algorithm (WOA) is an algorithm that imitates whale foraging behavior, and the firefly algorithm (FA) is an algorithm that imitates firefly behavior. This paper proposes a hybrid firefly-whale optimization algorithm (FWOA) based on multi-population and opposite-based learning using the above algorithms. This algorithm can quickly find the optimal path in the complex mobile robot working environment and can balance exploitation and exploration. In order to verify the FWOA's performance, 23 benchmark functions have been used to test the FWOA, and they are used to optimize the MRPP. The FWOA is compared with ten other classical metaheuristic algorithms. The results clearly highlight the remarkable performance of the Whale Optimization Algorithm (WOA) in terms of convergence speed and exploration capability, surpassing other algorithms. Consequently, when compared to the most advanced metaheuristic algorithm, FWOA proves to be a strong competitor.

2.
Ecotoxicol Environ Saf ; 269: 115810, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100849

RESUMO

BACKGROUND: Jujuboside B (JuB) is the main bioactive saponin component of Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen, which has been reported to possess varied pharmacological functions. Even though it has been traditionally used to treat inflammation- and toxicity-related diseases, the effects of JuB on acetaminophen (APAP) overdose-induced hepatotoxicity have not been determined yet. METHODS: C57BL/6 J mice were pre-treated with JuB (20 or 40 mg/kg) for seven days before APAP (400 mg/kg) injection. After 24 h of APAP treatment, serum, and liver tissues were collected to evaluate the therapeutic effects. To investigate whether the Nrf2-STING signaling pathway is involved in the protective effects of JuB against APAP-induced hepatotoxicity, the mice received the DMXAA (the specific STING agonist) or ML385 (the specific Nrf2 inhibitor) during the administration of JuB, and Hematoxylin-eosin staining, Real-time PCR, immunohistochemical, and western blot were performed. RESULTS: JuB pretreatment reversed APAP-induced CYP2E1 accumulations and alleviated APAP-induced acute liver injury. Furthermore, JuB treatment significantly inhibited oxidative stress and the pro-inflammatory cytokines, as well as alleviated hepatocyte apoptosis induced by APAP. Besides, our result also demonstrated that JuB treatment upregulated the levels of total Nrf2, facilitated its nuclear translocation, upregulated the expression of HO-1 and NQO-1, and inhibited the APAP-induced STING pathway activation. Finally, we verified that the beneficial effects of JuB were weakened by DMXAA and ML385. CONCLUSION: Our study suggested that JuB could ameliorate APAP-induced hepatic damage and verified a previously unrecognized mechanism by which JuB prevented APAP-induced hepatotoxicity through adjusting the Nrf2-STING pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Saponinas , Animais , Camundongos , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estresse Oxidativo , Fígado , Saponinas/farmacologia , Saponinas/uso terapêutico
3.
Cell Rep ; 42(12): 113588, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117655

RESUMO

CD133 is widely used as a marker to isolate tumor-initiating cells in many types of cancers. The structure of N-glycan on CD133 is altered during the differentiation of tumor-initiating cells. However, the relationship between CD133 N-glycosylation and stem cell characteristics remains elusive. Here, we found that the level of α-1,2-mannosylated CD133 was associated with the level of stemness genes in intrahepatic cholangiocarcinoma (iCCA) tissues. α-1,2-mannosylated CD133+ cells possessed the characteristics of tumor-initiating cells. The loss of the Golgi α-mannosidase I coding gene MAN1C1 resulted in the formation of α-1,2-mannosylated CD133 in iCCA-initiating cells. Mechanistically, α-1,2-mannosylation promoted the cytoplasmic distribution of CD133 and enhanced the interaction between CD133 and the autophagy gene FIP200, subsequently promoting the tumorigenesis of α-1,2-mannosylated CD133+ cells. Analysis of iCCA samples showed that the level of cytoplasmic CD133 was associated with poor iCCA prognosis. Collectively, α-1,2-mannosylated CD133 is a functional marker of iCCA-initiating cells.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Transformação Celular Neoplásica/patologia , Carcinogênese/patologia , Proteínas de Ciclo Celular , Ductos Biliares Intra-Hepáticos/patologia
4.
Mol Biol Rep ; 51(1): 40, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158471

RESUMO

PURPOSE: PABPN1 acts as a modulator of poly(A) tail length and alternative polyadenylation. This research was aimed to explore the role of PABPN1 in colorectal cancer (CRC). METHODS: Public databases were performed to analyze expression, location, roles of prognosis and tumor immunity and interaction with RNAs and proteins of PABPN1. To investigate PABPN1 expression in tissues, 78 CRC specimens were collected to conduct IHC, and 30 pairs of frozen CRC and corresponding adjacent normal tissues were used to conduct qRT-PCR and WB. In addition, in vitro experiments were then carried out to identify the role of PABPN1 in CRC. RESULTS: Compared with normal tissues, PABPN1 expression was significant higher in CRC. Its high level predicted poor outcome of CRC. Th1 and Treg had significant negative relationships not only with PABPN1 expression, but also with six molecules interacting with PABPN1, including IFT172, KIAA0895L, RECQL4, WDR6, PABPC1 and NCBP1. In addition, PABPN1 had negative relationships with quite a few immune markers, such as CSF1R, IL-10, CCL2 and so on. In cellular experiments, silencing PABPN1 inhibited proliferation and promoted apoptosis in HCT-116 CRC cells. CONCLUSION: In summary, PABPN1 might become a novel biomarker and correlate with tumor immunity in CRC.


Assuntos
Neoplasias Colorretais , RNA , Humanos , RNA Mensageiro , Células HCT116 , Biomarcadores , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteína I de Ligação a Poli(A) , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
5.
Environ Sci Technol ; 57(45): 17338-17352, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902991

RESUMO

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.


Assuntos
Chloroflexi , Cloreto de Vinil , Bactérias , Biodegradação Ambiental , Interações Microbianas
6.
J Environ Manage ; 348: 119368, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866181

RESUMO

Producing biodiesel from food waste (FW) would benefit both environment and economy. Current study investigated biodiesel production from food waste and domestic wastewater by utilizing the oleaginous yeast Rhodosporidium toruloides under non-sterile condition. The potential of biolipid production from the mixture of effluents of existing local FW treatment facilities and domestic wastewater was firstly evaluated. Then, to increase the nutrient recovery efficiency, FW hydrolysis process by crude enzymes produced from solid FWs by Aspergillus oryzae was introduced and the conditions were further optimized. The optimized hydrolysis process resulted in reducing sugar (RS) yield of 251.81 ± 8.09 mg gdryFW-1 and free amino nitrogen (FAN) yield of 7.70 ± 0.74 mg gdryFW-1 while waste oil with the RS yield of 93.54 ± 0.01 mg gdryFW-1 was easily separated without solvent usage. Compared to the hydrolysate only used, when mixed with domestic wastewater, the results showed obvious enhancement on biomass yield, biolipid yield, and wastewater treatment efficiency. The maximum biolipid yield was 29.80 ± 0.50 mg gdryFW-1 and the estimated quality of biodiesel produced from the biolipid met both EN 14214 and ASTM D6751 standards.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Biocombustíveis , Alimentos , Açúcares
7.
Heliyon ; 9(9): e19805, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809464

RESUMO

Objective: This research was aimed to preliminarily explore the clinical roles and potential molecular mechanisms of MIR99AHG and its significant transcripts in breast cancer (BRCA). Methods: Public databases were utilized to analyze the expression and prognostic roles of MIR99AHG and its transcripts. Relationships between MIR99AHG expression and immune cells infiltration were analyzed in Xiantao platform. In addition, co-expressed genes and interacting proteins of MIR99AHG were predicted. CancerSEA analyzed its relationship with functional states. Next, CNV status, DNA methylation, interacting transcription factors (TFs) and ceRNA network were analyzed to explore its possible mechanisms. Then, RNA ISH and FISH assays were used to detect its expression and location in BRCA tissues and cell lines, respectively. Finally, qRT-PCR was utilized to investigate MIR99AHG expression in cell lines. Results: Compared with the corresponding normal tissues, MIR99AHG expression levels were lower in all BRCA subtypes, and luminal B's was the lowest one. And MIR99AHG expression was negatively related to the tumor stage. In addition, 4 transcripts (ENST00000619222.4, ENST00000418813.6, ENST00000602901.5 and ENST00000453910.5) of MIR99AHG showed significant differences in the expression. Databases also suggested that the high MIR99AHG expression levels indicated good prognosis, especially in patients without lymph node metastasis. Xiantao found that MIR99AHG was positively related to 17 immune cells and negatively linked with 2 immune cells. CancerSEA analysis showed no relationships between MIR99AHG and functional states. From GEPIA and BCIP databases, 19 co-expressed genes were highly related to these four significant transcripts of MIR99AHG. StarBase, RNAct and HDOCK showed that several tumor-associated proteins, including U2AF65, hnRNPC, AEBP2, CHIC1 and so on, might interact with MIR99AHG. Genetically, BRCA had a higher proportion of MIR99AHG CNV loss than CNV gain, and the high level of DNA methylation indicated a good prognosis. Furthermore, 19 TFs were predicted to combine with the promoter of MIR99AHG. Then, we screened out 10 miRNAs potentially interacting with the significant transcripts of MIR99AHG, and five were significantly increased in breast tumors compared to normal tissues, including miR-194-5p, miR-320 b and so on, which could combine 14 mRNAs. Through ISH and FISH assays, we verified that MIR99AHG was down-regulated in BRCA samples and cell lines in comparison to non-tumor tissues and mammary epithelial cell line (MCF10A), and MIR99AHG was located both in cytoplasm and nucleus. qRT-PCR assay also showed the lower expression of MIR99AHG in breast cancer cells than that in MCF10A. Conclusion: These results indicate that MIR99AHG can be a favorable prognostic indicator for BRCA. ENST00000619222.4, ENST00000418813.6, ENST00000602901.5 and ENST00000453910.5 are significant transcripts and their down-regulation may play crucial roles in the progression of BRCA.

8.
J Hazard Mater ; 460: 132387, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639788

RESUMO

Waste scrap tyre as microbial immobilization matrix enhanced degradation of phthalate esters (PAEs), di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diethyl phthalate (DEP). The hybrid (physical adsorption and microbial immobilization) degradation process performance of scrap tyres was examined for the PAEs degradation. The scrap tyre was shown with competitive adsorption capacity toward PAEs, influenced by pH, temperature, dosage of adsorbent (scrap tyre), and concentration of PAE. The primary adsorption mechanism for tyres toward PAEs was considered hydrophobic. The immobilization of previously isolated Bacillus sp. MY156 on tyre surface significantly enhanced PAEs degradation as well as bacterial growth. The enzymatic activity results implied immobilization promoted dehydrogenase activity and decreased esterase activity. The cell surface response during PAEs degradation, in terms of morphological observation, FTIR and XRD analyses, and extracellular polymeric substance (EPS) release, was further assessed to better understand the interactions between microorganisms and tyre surface. Waste scrap tyres could be a promising potential candidate to be reused for sustainable environmental management, including contaminants removal.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Água , Adsorção , Ésteres
9.
Environ Pollut ; 334: 122111, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392866

RESUMO

Triclosan (TCS), a synthetic and broad-spectrum antimicrobial agent, is frequently detected in various environmental matrices. A novel TCS degrading bacterial strain, Burkholderia sp. L303, was isolated from local activated sludge. The strain could metabolically degrade TCS up to 8 mg/L, and optimal conditions for TCS degradation were at temperature of 35 °C, pH 7, and an increased inoculum size. During TCS degradation, several intermediates were identified, with the initial degradation occurring mainly through hydroxylation of aromatic ring, followed by dechlorination. Further intermediates such as 2-chlorohydroquinone, 4-chlorocatechol, and 4-chlorophenol were produced via ether bond fission and C-C bond cleavage, which could be further transformed into unchlorinated compounds, ultimately resulting in the complete stoichiometric free chloride release. Bioaugmentation of strain L303 in non-sterile river water demonstrated better degradation than in sterile water. Further exploration of the microbial communities provided insights into the composition and succession of the microbial communities under the TCS stress as well as during the TCS biodegradation process in real water samples, the key microorganisms involved in TCS biodegradation or showing resistance to the TCS toxicity, and the changes in microbial diversity related to exogenous bioaugmentation, TCS input, and TCS elimination. These findings shed light on the metabolic degradation pathway of TCS and highlight the significance of microbial communities in the bioremediation of TCS-contaminated environments.


Assuntos
Anti-Infecciosos , Triclosan , Triclosan/análise , Biodegradação Ambiental , Redes e Vias Metabólicas , Água
10.
ACS Appl Mater Interfaces ; 15(29): 35534-35542, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37449496

RESUMO

Poly(vinyl alcohol) (PVA) has been found as a wonderful matrix for chromophores to boost their room-temperature phosphorescence (RTP) character by forming abundant hydrogen bonding. Despite the well-utilized protective effect, the constructive role in accelerating the intersystem crossing is less investigated. Here, we focus on its role in manipulating the excited-state energy level to facilitate multiple intersystem crossing channels. Six benzoyl carbazole derivatives do not emit RTP in their solutions, powders, or crystals but exhibit significantly persistent RTP signals when embedded into the PVA matrix. Charge-transfer excited states were trapped by cofacial stacking in crystal, which blocks the intersystem crossing channels. In the PVA matrix, the allowed broad distribution of charge-transfer states covers the locally excited states, offering multiple intersystem crossing pathways via spin-vibronic orbit coupling. Consequently, efficient and persistent heavy-atom-free phosphors have been developed with the highest quantum yields of 7.7% and the longest lifetime of 2.3 s.

11.
Chemosphere ; 338: 139462, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437623

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has significantly increased the demand of disinfectant use. Chloroxylenol (para-chloro-meta-xylenol, PCMX) as the major antimicrobial ingredient of disinfectant has been widely detected in water environments, with identified toxicity and potential risk. The assessment of PCMX in domestic wastewater of Macau Special Administrative Region (SAR) showed a positive correlation between PCMX concentration and population density. An indigenous PCMX degrader, identified as Rhodococcus sp. GG1, was isolated and found capable of completely degrading PCMX (50 mg L-1) within 36 h. The growth kinetics followed Haldane's inhibition model, with maximum specific growth rate, half-saturation constant, and inhibition constant of 0.38 h-1, 7.64 mg L-1, and 68.08 mg L-1, respectively. The degradation performance was enhanced by optimizing culture conditions, while the presence of additional carbon source stimulated strain GG1 to alleviate inhibition from high concentrations of PCMX. In addition, strain GG1 showed good environmental adaptability, degrading PCMX efficiently in different environmental aqueous matrices. A potential degradation pathway was identified, with 2,6-dimethylhydroquinone as a major intermediate metabolite. Cytochrome P450 (CYP450) was found to play a key role in dechlorinating PCMX via hydroxylation and also catalyzed the hydroxylated dechlorination of other halo-phenolic contaminants through co-metabolism. This study characterizes an aerobic bacterial pure culture capable of degrading PCMX metabolically, which could be promising in effective bioremediation of PCMX-contaminated sites and in treatment of PCMX-containing waste streams.


Assuntos
COVID-19 , Desinfetantes , Rhodococcus , Humanos , Rhodococcus/metabolismo , Xilenos/metabolismo , Biodegradação Ambiental , Desinfetantes/metabolismo
12.
J Hazard Mater ; 457: 131781, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315412

RESUMO

Black-odorous urban rivers can serve as reservoirs for heavy metals and other pollutants, in which sewage-derived labile organic matter triggering the water blackening and odorization largely determine the fate and ecological impact of the heavy metals. Nonetheless, information on the pollution and ecological risk of heavy metals and their reciprocal impact on microbiome in organic matter-polluted urban rivers remain unknown. In this study, sediment samples were collected and analyzed from 173 typical black-odorous urban rivers in 74 cities across China, providing a comprehensive nationwide assessment of heavy metal contamination. The results revealed substantial contamination levels of 6 heavy metals (i.e., Cu, Zn, Pb, Cr, Cd, and Li), with average concentrations ranging from 1.85 to 6.90 times higher than their respective background values in soil. Notably, the southern, eastern, and central regions of China exhibited particularly elevated contamination levels. In comparison to oligotrophic and eutrophic waters, the black-odorous urban rivers triggered by organic matter exhibited significantly higher proportions of the unstable form of these heavy metals, indicating elevated ecological risks. Further analyses suggested the critical roles of organic matter in shaping the form and bioavailability of heavy metals through fueling microbial processes. In addition, most heavy metals had significantly higher but varied impact on the prokaryotic populations relative to eukaryotes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Rios , Medição de Risco , Metais Pesados/análise , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
13.
Opt Express ; 31(10): 16985-17002, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157765

RESUMO

Maximizing the data throughput for optical fiber communication via signal shaping has usually been regarded as challenging due to the nonlinear interference and implementation/optimization complexity. To overcome these challenges, in this paper, we propose an efficient four-dimensional (4D) geometric shaping (GS) approach to design 4D 512-ary and 1024-ary modulation formats by maximizing the generalized mutual information (GMI) using a 4D nonlinear interference (NLI) model, which makes these modulation formats more nonlinear-tolerant. In addition, we propose and evaluate a fast and low-complexity orthant-symmetry based modulation optimization algorithm via neural networks, which allows to improve the optimization speed and GMI performance for both linear and nonlinear fiber transmission systems. The optimized modulation formats with spectral efficiencies of 9 and 10 bit/4D-sym demonstrate a GMI improvement of up to 1.35 dB compared with their quadrature amplitude modulation (QAM) counterparts in additive white Gaussian noise (AWGN) channel. Numerical simulations of optical transmission over two types of fibers show that the 4D NLI model-learned modulation formats could extend the transmission reach by up to 34% and 12% with respect to the QAM formats and the AWGN-learned 4D modulation formats, respectively. Results of effective signal-to-noise ratio are also presented, which confirm that the extra gains in optical fiber channel come from the enhanced SNR by reducing the modulation-dependent NLI.

14.
Proc Natl Acad Sci U S A ; 120(20): e2220725120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155857

RESUMO

Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.


Assuntos
Sulfatos , Enxofre , Sulfatos/metabolismo , Oxirredução , Enxofre/metabolismo , Sulfetos/metabolismo , Óxidos de Enxofre
15.
Glob Chang Biol ; 29(2): 391-403, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203244

RESUMO

Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter-polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter-polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter-polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter-polluted urban rivers and supports their future sustainable management.


Assuntos
Microbiota , Rios , Cidades , Água , China
16.
J Immunol Res ; 2022: 3353250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249420

RESUMO

Methods: In the present study, we investigated hepatic macrophage heterogeneity in murine liver regeneration after 2/3 PHx through immunofluorescence staining, fluorescence-activated cell sorting analysis, and quantitative reverse transcription-polymerase chain reaction. Results: Our research showed that Kupffer cells reduced rapidly in the early PHx and restored gradually depending on local proliferation and replenishment from infiltrating monocyte-derived macrophages. The ratio of ly6Chi to ly6Clo subset of macrophages in the liver changed dynamically, and hepatic macrophage function exhibits a significant difference in different stages of liver regeneration. Moreover, blocking infiltrating monocyte-derived macrophage recruitment augmented Kupffer cell proliferation but impaired the restoration of the hepatic macrophage pool, which led to delayed hepatocyte mitosis and liver regeneration. Conclusions: Our data suggest that hepatic macrophage changes dynamically in origin and function during liver regeneration following PHx and macrophage-targeted liver regeneration should consider macrophage heterogeneity.


Assuntos
Hepatectomia , Regeneração Hepática , Animais , Hepatócitos , Células de Kupffer , Fígado/cirurgia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
17.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080069

RESUMO

Albendazole (ABZ), an effective benzimidazole antiparasitic drug is limited by its poor solubility and oral bioavailability. In order to overcome its disadvantages, ABZ nanocrystals were prepared using a novel bottom-up method based on acid-base neutralization recrystallization with high-speed mixing and dispersing. The cosolvent, stabilizer and preparation temperature were optimized using single factor tests. The physicochemical properties, solubility and pharmacokinetics of the optimal ABZ nanocrystals were evaluated. The high-performance liquid chromatography (HPLC), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) showed that ABZ had no structural and crystal phase change after nanocrystallization. The saturated solubility of ABZ nanocrystals in different solvents was increased by 2.2-118 fold. The oral bioavailability of the total active ingredients (ABZ and its metabolites of albendazole sulfoxide (ABZSO) and albendazole sulfone (ABZSO2)) of the nanocrystals in rats was enhanced by 1.40 times compared to the native ABZ. These results suggest that nanocrystals might be a promising way to enhance the solubility and oral bioavailability of ABZ and other insoluble drugs.

18.
Drug Deliv ; 29(1): 2734-2741, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35983590

RESUMO

In order to solve the difficulties in the treatment of Staphylococcus aureus infections, a novel enrofloxacin-cyclodextrin (ß-CD) inclusion complexes (IC) containing hyaluronic acid/chitosan (HA/CS) self-assemble composite nanosystems covered by poloxamer 188 was designed in our previous study. In this study, the sustained release peforemance, targeting delivery, and therapy effects of the enrofloxacin-composite nanosystems were evaluated in vivo. The enrofloxacin-composite nanosystems had uniform size and smooth surface with drug loading capacity (LC) of 9.92 ± 0.3%. Thermogravimetric analysis (TGA) showed that the material used for the preparation of the enrofloxacin-composite nanosystems did not affect the thermal stability of enrofloxacin. Compared with enrofloxacin injection and enrofloxacin polymeric nanoparticles, the enrofloxacin-composite nanosystems had excellent sustained-release performance in vivo. The enrofloxacin-composite nanosystems have specific targeting to the infection site of Staphylococcus aureus. The excellent sustained release and targeting delivery properties ensure that the anti-infective treatment effect of the enrofloxacin-composite nanosystems in vivo was higher than that of enrofloxacin injection and enrofloxacin polymeric nanoparticles. It can more effectively promote the wound healing. These results suggest that our previous designed enrofloxacin-composite nanosystems will be a promising formulation for effective targeting therapy of Staphylococcus aureus infections.


Assuntos
Quitosana , Nanopartículas , Infecções Estafilocócicas , Preparações de Ação Retardada , Enrofloxacina , Humanos , Ácido Hialurônico , Infecções Estafilocócicas/tratamento farmacológico
19.
Virol J ; 19(1): 117, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836270

RESUMO

BACKGROUND: Coinfection with hepatitis C virus (HCV) is common in human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) patients due to shared routes of transmission. We aimed to investigate the characteristics of HCV subgenotypes among HIV/HCV-coinfected patients in Guangdong and explore the molecular transmission networks and related risk factors for HCV strains. METHODS: Plasma samples were obtained from 356 HIV/HCV-coinfected patients for HCV NS5B region sequencing. A neighbor-joining phylogenetic tree was constructed to affirm HCV subgenotypes. The transmission networks based on maximum likelihood phylogenetic tree were determined by Cluster Picker, and visualized using Cytoscape 3.2.1. RESULTS: A total of 302 HCV NS5B sequences were successfully amplified and sequenced from the 356 plasma samples. A neighbor-joining phylogenetic tree based on the 302 NS5B sequences revealed the profile of HCV subgenotypes circulating among HIV/HCV coinfection patients in Guangdong. Two predominant strains were found to be 6a (58.28%, 176/302) and 1b (18.54%, 56/302), followed by 3a (10.93%, 33/302), 3b (6.95%, 21/302), 1a (3.64%, 11/302), 2a (0.99%, 3/302) and 6n (0.66%, 2/302). A molecular transmission network of five major HCV genotypes was constructed, with a clustering rate of 44.04%. The clustering rates of subgenotypes 1a, 3a, 3b, 1b, and 6a were 18.18% (2/11), 42.42%, 52.38%, 48.21%, and 44.89%, respectively. Multivariate logistic regression analysis showed no significant effects from sex, age, transmission route, geographical region, baseline CD4 + T cell count or subgenotype (P > 0.05), except marital status. Married or cohabiting people (compared with unmarried people) had more difficulty forming transmission networks. CONCLUSIONS: In summary, this study, based on HCV NS5B subgenotypes, revealed the HCV subtype diversity and distribution among HIV/HCV-coinfected patients in Guangdong. Marital status inclined to be the factor influencing HCV transmission networks formation.


Assuntos
Coinfecção , Infecções por HIV , Hepatite C , China/epidemiologia , Coinfecção/epidemiologia , Genótipo , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Hepacivirus/genética , Hepatite C/complicações , Hepatite C/epidemiologia , Humanos , Filogenia
20.
Nanotechnology ; 33(45)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35896089

RESUMO

Intrinsic activity and reactive numbers are considered two important factors in oxygen reduction reaction (ORR) catalysts. Herein, we report the rational design and synthesis of a strongly coupled hybrid material comprising of FeZn nanoparticles (FeZn NPs) supported by a three-dimensional carbon conductive network (FeZn NPs@3D-CN) for increased ORR performance. Fe-N-C sites can offer high intrinsic activity owing to the unique bonding and oxygen vacancies, and the carbon conductive network facilitating the exposure to active sites, and increasing electron transport. Because of the synergetic effect of the conductive networks containing Fe-N-C and polyaniline, the catalysts exhibited ORR activity in an alkaline medium via a four-electron transfer process. FeZn NPs@3D-CN exhibited outstanding performance with a limited current density (6.2 mA cm-2), the Tafel slope (81.19 mV dec-1), and stability (23 mV negative shift after 2000 cycles), which were superior to those of 20% Pt/C (5.7 mA cm-2, 75.1 mV dec-1, 36 mV negative shift after 2000 cycles). This research highlights the effect of conductive networks expanding pathways and reducing the resistance of mass transport, which is a facile method to generate superior ORR electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...